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This paper reports the results of an analytical and numerical study on natural convection heat transfer with and 
without solutal buoyancy forces in a non-Newtonian power-law fluid contained in a horizontal rectangular shallow 
enclosure submitted to uniform heat and mass fluxes along its short vertical sides, while the horizontal ones are 
insulated and impermeable. An approximate theoretical solution is developed, on the basis of the parallel flow 
assumption, and validated numerically by solving the full governing equations. A comparison between results 
obtained in presence and in absence of solutal buoyancy forces is done. The effect of the non-Newtonian behavior on 
fluid flow and heat transfer characteristics is examined.  
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Nomenclature 
 
A − aspect ratio of the cavity, Eq. (11) 
CT − dimensionless temperature gradient in the x-direction 
CS − dimensionless concentration gradient in the x-direction 
D − mass diffusivity (m2/s) 
g − gravitational acceleration (m/s2)  
H′ − height of the enclosure (m) 
j′ − constant mass flux per unit area (kg/m2⋅s)  
K − consistency index for a power-law fluid at the reference 
temperature (Pa⋅sn)  
Le − Lewis number, Eq. (11) 
L′ − length of the rectangular enclosure (m) 
N − buoyancy ratio, Eq. (11) 
n − flow behavior index for a power-law fluid at the reference 
temperature 
Nu − local Nusselt number, Eqs. (12), (13) and (33)  
Nu − average Nusselt number, Eqs. (14) and (33) 
Pr − generalised Prandtl number, Eq. (11)  

q′ − constant heat flux per unit area (W/m2)  
RaT − generalized thermal Rayleigh number, Eq. (11)  
S − dimensionless concentration ( )[ ]∗Δ′−′= SSS c  

cS ′ − reference concentration at the geometric center of the 
enclosure (kg/m3)  
Sh − local Sherwood number, Eqs. (12), (13) and (33) 

Sh − mean Sherwood number, Eqs. (14) and (33) 
T − dimensionless temperature ( )[ ]∗Δ′−′= TTT c  

cT ′ − reference temperature at the geometric center of the 
enclosure (K) 
ΔT* − characteristic temperature [ ]λ′′= Hq  (K) 
ΔS* − characteristic concentration [ ]DHj ′′=  (kg/m3) 
(u, v) − dimensionless axial and transverse velocities 

( ) ( )[ ]Hv,u ′α′′=  
(x, y) − dimensionless axial and transverse co-ordinates 

( )[ ]Hy,x ′′′=  
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Greek symbols 
α − thermal diffusivity of fluid at the reference temperature 
(m2/s) 
βT − thermal expansion coefficient of fluid at the reference 
temperature (1/K)  
βS − solutal expansion coefficient of fluid at the reference 
concentration (m3/kg)  
λ − thermal conductivity of fluid at the reference temperature 
(W/m⋅C)  
μ − dynamic viscosity for a Newtonian fluid at the reference 
temperature (Pa⋅s)  
μa − dimensionless apparent viscosity of fluid, Eq. (7) 
ρ − density of fluid at the reference temperature (kg/m3)  
Ω − dimensionless vorticity ( )[ ]2H ′αΩ=  
ψ − dimensionless stream function [ ]αψ=  
 

Superscript 
' − dimensional variable 
 

Subscripts 
c − value relative to the centre of the enclosure (x, y) = (A/2, 1/2) 
* − characteristic variable 
 
 
 

Introduction 
 
Thermal or simple natural convection is a flow due to 
density variations with temperature in gravitational field. 
Double-diffusive natural convection, i.e. flows generated 
by buoyancy due to simultaneous temperature and 
concentration gradients, can be found in wide range of 
situations. In nature, such flows are encountered in the 
oceans, lakes, solar ponds, shallow coastal waters and 
the atmosphere. In industry, examples include chemical 
processes, crystal growth, energy storage, material and 
food processing, etc... For a review of the fundamental 
works in this area see, for instance, [1]. 
The literature on double-diffusive natural convection 
shows that the majority of investigations were focused 
on the enclosures of rectangular form [2]. 

In the past, many studies concerning Newtonian fluid 
flows in enclosures, driven simultaneously by thermal 
and solutal buoyancy effects, were carried out. These can 
be classified under three types, according to the thermal 
and solutal boundary conditions adopted. In the first 
type, the cavity is subjected to a vertical solutal gradient 
and a horizontal thermal one [3]. In the second type, both 
the temperature and concentration gradients are imposed 
transversally [4]. In the third type, which is the present 
case, both the thermal and solutal gradients are imposed 
laterally [5]. 
To our knowledge, for non-Newtonian fluids, except the 
work performed by Benhadji et al. [6] in the case of a 
porous horizontal rectangular layer, where double-
diffusive convection is generated inside a power-law 
fluid by application of horizontal or vertical uniform heat 
and mass fluxes, there is no investigations dealing with 
fluid-filled enclosures.Otherwise, the majority of 
investigations concerning non-Newtonian fluids dealt 
with thermal driven buoyancy convection [7, 8]. 
Non-Newtonian flows are of importance and very 
present in many industrial applications such as paper 
making, oil drilling, slurry transporting, food processing, 
polymer engineering and many others. Some of these 
applications are discussed in Jaluria [9]. 
In order to contribute to fill the gap left by the lack of 
studies on the field, at least partly, the present 
investigation focuses on the effect of solutal buoyancy 
forces on natural convection heat transfer inside a two-
dimensional horizontal rectangular enclosure, filled with 
a non-Newtonian fluid. The cavity is submitted to 
uniform heat and mass fluxes from its short vertical 
sides, while its long horizontal boundaries are insulated 
and impermeable.  

 
Mathematical formulation 

 
The studied configuration, sketched in Fig. 1, is a 
rectangular enclosure of height H′ and length L′ with the 
long horizontal rigid walls insulated and impermeable 
and the short vertical ones submitted to constant heat and 
mass densities of fluxes, q′ and j′, respectively. 
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Fig. 1. Sketch of the cavity and co-ordinates system 
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The non-Newtonian fluids considered here are those for 
which the rheological behavior can be described by the 
power-law model, proposed by Ostwald-De Waele 
[10], whose expression, in term of laminar apparent 
viscosity, is  
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where n is the power-law index and k is an empirical 
coefficient known as the consistency factor, which is an 
indicator of the degree of fluids viscosity. Note that for 
n = 1 the power-law model reduces to the Newton’s law 
by setting k = μ. Thus, the deviation of n from unity 
characterizes the degree of non-Newtonian behavior of 
the fluid. Specifically, when n is in the range 0 < n < 1 
the fluid is said to be pseudo-plastic (or shear-thinning) 
and the viscosity is found to decrease by increasing the 
shear rate. On the other hand when n > 1 the fluid is said 
to be dilatant (or shear-thickening) and the viscosity 
increases by increasing the shear rate. Dilatant fluids are 
generally much less frequent than pseudo-plastic ones. 
Though the Ostwald-de Wale model does not converge 
to a Newtonian behavior in the limit of zero and 
maximum shear rates, it presents however the advantage 
to be simple and mathematically tractable. In addition, 
the rheological behavior of many substances can be 
adequately represented by this model for relatively large 
range of shear rates (or shear stresses) making it useful, 
at least for engineering purpose, and justifying its use in 
most theoretical investigations of fluids having pseudo-
plastic or dilatant behaviors. On the other hand, the main 
assumptions made here are those commonly used, i.e., 
the flow is laminar and two-dimensional, the viscous 
dissipation is negligible, the interactions between heat 
and mass exchanges, known under the name of Soret and 
Duffour effects, are negligible, the fluid is 
incompressible and its physical properties are considered 
temperature independent except the density in the 
buoyancy term which obeys the Boussinesq 
approximation. Then, the dimensionless governing 
equations, written in terms of vorticity, Ω, temperature, 
T, concentration, S, and stream function, ψ, are: 
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where 

  
x

 v
y

u
∂
ψ∂

−=
∂
ψ∂

= ;     (6) 
 

2
1

222

2

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡

∂
∂

+
∂
∂

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=μ

n

a x
v

y
u

y
v

x
u

   (7) 

 

and 
 

+⎥
⎦

⎤
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡

∂
∂

−
∂
∂

∂∂
μ∂

−⎥⎦
⎤

⎢⎣
⎡

∂
∂

+
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡

∂
μ∂

−
∂

μ∂
=

y
v

x
u

yxx
v

y
u

 
yx

PrS aaa
2

2

2

2

2

Ω 2

  ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

+
x
S

N
x
T

RaPr T  .    (8) 
 

Such a formulation presents the advantage to reduce the 
number of equations, by eliminating the pressure, which 
is without interest in this study, and to be more 
appropriate for two-dimensional flows.  
The dimensionless boundary conditions, for the physical 
system considered here, are 
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On the other hand, for the vorticity, which is unknown at 
the boundaries, the relation of woods [11] is used, for its 
accuracy and stability. 
The dimensionless variables are obtained by using the 
characteristic scales ,H ′  ,2 α′H  ,H ′α  ,2H ′α  

λ′′Hq , DHj ′′  and α corresponding to length, time, 
velocity, vorticity, characteristic temperature, 
characteristic concentration, and stream function, 
respectively. 
In addition to the power-law index, n, the present 
problem is governed by five other dimensionless 
parameters, namely, the aspect ratio of the enclosure, A, 
the Lewis number, Le, the buoyancy ratio, N, the 
generalized Prandtl, Pr, and thermal Rayleigh, TRa , 
numbers, whose expressions are 
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Notice that it is possible to recover the Newtonian 
expressions of Pr and TRa  by setting n = 1 and 
replacing k by the Newtonian viscosity μ. 
 

Numerics 
 
The two-dimensional governing equations are solved by 
using the well known second order central finite 
difference method with a regular mesh size. The 
integration of Eq. (2), (3) and (4), is performed with the 
alternating-direction implicit method (ADI). This 
method, frequently used for Newtonian fluids, was 
successfully extended to non-Newtonian power-law 
fluids in the past by Ozoe and Churchill [7] and recently 
by Lamsaadi et al. [8]. To satisfy the mass conservation, 
Eq. (5) is solved by a point successive over-relaxation 
method (PSOR) with an optimum relaxation factor 
calculated by the Franckel formula [11]. The mesh size 
is chosen on the basis of a compromise between running 
time and accuracy of the results. The procedure is based 
on grid refinement until the numerical results agree with 
the parallel flow ones, presented below, within 
reasonable accuracy. Hence, a uniform grid of 321×81 is 
found sufficient to model accurately the flow, temperature 
and concentration fields within a cavity of A = 24 (value 
used for the numerical computations). To satisfy the 
continuity equation, the convergence criterion 
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1
, 10  is adopted, where k

ji,ψ  is 

the value of the stream function at the kth iteration level. 
The time step size, δt, is varied in the range 10-7 ≤ δt ≤ 10-4, 
depending on the values of the governing parameters. More 
precisely, the small values of δt are used for high values of 
n and RaT. 
With the Ostwald power-law model, the dimensionless 
viscosity, given by Eq. (7), tends towards infinity, for, 
0 < n < 1 at the level of the cavity corners, where the 
velocity gradients tend towards zero, which renders 
impossible direct numerical computations. This 
difficulty is, however, overcome by using average values 
for the corner viscosity making, thus, the computations 
possible and stable.  
The local heat and mass transfers through the fluid layer 
filling the cavity can be expressed in terms of the local 
Nusselt and Sherwood numbers, respectively, defined as 
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where ( ) ( )A,yT,yTT −=Δ 0  and ( ) ( )A,yS,ySS −=Δ 0  are 
the side to side dimensionless local temperature and 
concentration differences, respectively. This definition 
is, however, notoriously inaccurate owing to the 
uncertainty of the temperature and concentration values 
evaluated at the two vertical walls (edge effects). 
Instead, the Nusselt and Sherwood numbers are 
calculated on the basis of a temperature and 
concentration differences between two vertical sections, 
far from the end sides. Thus, by analogy with Eq. (12), 
and considering two infinitesimally close sections, the 
local Nusselt and Sherwood numbers can be defined by 
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where δx is the distance between two symmetrical 
sections with respect to the central one. The 
corresponding average Nusselt and Sherwood numbers 
are, respectively, calculated at different locations, as 
follows  

( )∫=
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dyyNuNu  

and  

      ( )∫=
1

0

dyyShSh .  (14) 

 

As an additional check of the results accuracy, energy 
and matter balances are systematically verified for the 
system at each numerical code running. Thus, the overall 
heat and mass transfers, through each vertical plane, are 
evaluated and compared with the quantities of heat and 
mass furnished to the system at x = 0. For the results 
reported here, the energy and matter balances are 
satisfied within 2 % as a maximum difference. 
Typical numerical results, in terms of streamlines (a), 
isotherms (b) and isoconcentrations, are presented in 
Fig. 2, obtained, for A = 24, Le = 10, TRa = 105 and 
various values of n and N. As appears, from these 
figures, the flow is parallel to the horizontal boundaries 
of the enclosure and the temperature and the 
concentration are linearly stratified in the x-direction of 
the core region. The approximate analytical solution, 
developed in the next section, relies on these 
observations. 
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Fig. 2. Combined effect of N and n on: a) − streamlines; b) − isotherms  
 
 

Approximate parallel flow analytical solution 
 

The results presented in Fig. 2, allow the following 
appropriate simplifications: 
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where TC  and SC  are unknown constant temperature 
and concentration gradients in the x-direction. On the 
basis of this, the non-dimensional governing equations 
become 
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as boundary and return flow conditions, respectively. 
Recently, the above concept has been successfully used 
by Lamsaadi et al. [8] to predict the thermal convection 
flow behavior in the case of a non-Newtonian power-law 
fluid. 
The integration of Eq. (16) and (17), coupled with the 
conditions (18) and (19), leads to analytical expressions 
of velocity, temperature and concentration. However, 
such an operation is difficult to carry out owing to the 
particular nature of the governing equations and requires, 
therefore, a special numerical treatment. In fact, the non-
linearity of the fluid behavior and the change of dydu  
sign, due to the return flow, impose that the velocity 



Solar energy 
 

82    
International Scientific Journal for Alternative Energy and Ecology № 6 (62) 2008 

© Scientific Technical Centre «TATA», 2008   
 

expressions are different depending on whether 0 ≤ y ≤ y0, 
y0 ≤ y ≤ y1 or y1 ≤ y ≤ 1, where 0y  and y1 =1 − y0 
(because of the centro-symmetry of the core flow) are 
the vertical coordinate values for which 0=dydu . They 
are derived from Eq. (19), which is numerically solved 

by using a combination of the Regula-Falsi iteration 
method [12] and the Gauss-Legendre integration method 
[13]. To reduce the velocity, temperature and 
concentration expressions, the function 

( ) ( ) 210
2 yyyyyf +−=  is introduced. Thus, for 
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The expression of θs(y), given by 
 

        ( ) ( )y
C
C

Ley T
T

S
S θ=θ                  (26) 

 
is obtained by eliminating u from Eq. (17) and (18), and integrating twice the resulting equation taking into account 
of Eq. (19) and the centro-symmetry of thermal and solutal fields in the core region. The exploitation of such a 
property and the use of Eq. (26) give, respectively:  
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and 

       ( ) ( )00 T
T

S
S C

C
Le θ=θ .                (28) 

 
The expression of ψ(y) can be deduced from that of u(y) by integration of Eq. (6) taking into account of Eq. (10). 
Therefore, the stream function at the center of the enclosure, which is a measure of the flow intensity, can be 
expressed by 
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On the other hand, TC  and SC  are evaluated from 
thermal and solutal boundary conditions imposed on the 
end walls. Because of the turning flow at the end regions 
of the fluid layer, the boundary conditions in the x-
direction, Eq. (9), could not be satisfied by the parallel 
flow approximation. Instead, the expressions of TC  and 

SC  are determined by matching the core solution, Eq. 
(15), to the integral solution for the end regions, which 
consists on the integration of Eq. (3) and (4), together 
with the boundary conditions (9) and (10), by 
considering the arbitrary control volume of Fig. 1. This 
yields: 

( ) ( )∫ θ=+
1

0

1  dyyyuC TT  

and  

            ( ) ( )∫ θ=+
1

0

1  dyyyuLeC SS   (30) 

 

to which the substitution of the expressions of u(y), θT(y) 
and θS(y) gives: 
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On the other hand, knowing that ST NCCE += , the 
following transcendental equation is obtained 
 

−+− ++ nn
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nn
Tn ERaLeAERaALe 212241422 )1(  

 

            0)1()( 222 =++++− NEERaANLe nn
Tn ,    (32) 

 
where the coefficient An, which depends only on n, is 
calculated with the Gauss-Legendre integration method 
and its values are presented with those of y0 in Table 1. 
 

Table 1 
Dependence  of  y 0  and A n  on  n  

 

n y0 An 

0.6 0.199 −0.485⋅10−7 

1.0 0.211 −0.276⋅10−5 

1.4 0.219 −0.160⋅10−4 

 
It should be point out, from Table 1, that y0 is an 
increasing function of n, which means that the velocity 
maximum is displaced away from the lower wall by 
increasing n. Moreover, Eq. (19)-(27) indicate that n is 
the only parameter that affects the shape of u, ψ, θT and  
θS  profiles. 
To determine the value of E, Eq. (32) is solved by the 
Regula-Falsi iteration method and the values of CT and  
CS are deduced from Eq. (31), for each given value of 
Le, N, n and TRa . 
Finally, taking into account of Eq. (13) and (14), the 
Nusselt and Sherwood numbers are constant and can be 
expressed as 
 

NuCNu T =−= 1  
and  

    ShCSh S =−= 1 .  (33) 
 

Results and discussion 
 
The fact of imposing uniform heat and mass fluxes, as 
boundary conditions, leads to flow characteristics 
independent on the aspect ratio, A, when this parameter 
is large enough. The approximate solution, developed in 
the preceding section, on the basis of the parallel flow 
assumption, is thus valid asymptotically in the limit of a 
shallow cavity A >> 1. In this respect, after some 
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numerical tests (results not presented here), 24 is found 
as being the smallest value of A leading to results 
reasonably close to those of the large aspect ratio 
approximation. In fact, the asymptotic analytical limits 
are largely reached in such a situation. This value 
reduces to 8=A  in pure thermal convection ( 0=N ) as 
obtained by Lamsaadi et al. [8], which shows the 
retarding role of the double diffusion with respect to the 
asymptotic state. On the other hand, for the non-
Newtonian fluids considered here, the Prandtl number, 
Pr, is large enough such that the convection becomes 
insensitive to any change of the large values of this 
parameter [4, 8]. On the basis of this, the simulations are 
conducted with ∞→Pr , i.e. by neglecting the 
convective terms on the left hand side of Eq. (2), which 
presents the advantage of making the computations 
faster than with finite large values of Pr [10]. Therefore, 
the natural double-diffusive convection flow developed 
inside the enclosure is governed by the thermal Rayleigh 
number, TRa , the buoyancy ratio, N, the Lewis number, 
Le, and the power-law index n, which is varied, in this 
study, from 0.6 to 1.4 to include shear-

thinning ( )10 << n , Newtonian ( )1=n  and shear-
thickening ( )1>n  fluids. 
 
Validation of the approximate parallel flow analytical 

solution 
The inspection of the streamlines (a) and isotherms (b), 
depicted in Fig. 2, allows affirming the existence of an 
analytical solution, for the present problem, owing to the 
parallelism and the stratification aspects that flow and 
temperature fields exhibit, respectively, in the central 
part of the enclosure, i.e. somewhat far from the side 
edges. Moreover, Fig. 3, comparing the corresponding 
horizontal velocity (top) and temperature (bottom) 
profiles, calculated analytically (continuous lines) and 
numerically (black dots) at mid-length of the cavity, 
along the vertical direction, testify to the almost perfect 
agreement between the two types of solutions.  
Another confirmation of this is given by Table 2 where 
the relative difference between analytical and 
numerical results does not exceed 0.61 % for cψ  and 

0.38 % for Nu . 
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Fig. 3. Velocity (a) and temperature (b) profiles for RaT = 105, Le = 10 and different values of n and N 
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Table 2 
Compar i son be tween  the  ana ly t ica l  and  numer ica l  re sul t s  fo r  N  =  0 ,  Ra T  =10 5  and Le  =  10  

 

cψ  Nu  
N = 0 

Parallel flow Numerical Parallel flow Numerical 

0.6 19.016 18.991 139,835 139.8 

1.0 8.035 8.01 30.115 30.08 n 

1.4 4.045 4.02 9.145 9.11 

cψ  Nu  
N = 1 

Parallel flow Numerical Parallel flow Numerical 

0.6 19.1 19.12 140.3 140.33 

1.0 8,51 8.53 30.549 30.58 n 

1.4 4.57 4.59 9.652 9.68 

 
 
Hence, it appears clear, from what precedes, that the 
results of the two approaches adopted in this study agree, 
at least for the governing parameters selected values, 
which validates the parallel flow assumption used in 
section 4 and justifies the choice of 24=A  as a large 
aspect ratio approximation value. 

Thermal convection with and without solutal  
buoyancy forces 

At first, it is advisable to recall that the case of natural 
simple convection (thermal) corresponds to N = 0, i.e. 
the case where solutal buoyancy forces are absent, 
whereas in presence of these forces, which corresponds 
to N ≠ 0, it is about the natural double diffusive 
convection. 
 It seems obvious from Fig. 2, where are depicted the 
streamlines (a) and isotherms (b), that the flow structure 
and the thermal field do not undergo qualitative change 
when N passes from 0 to 1 (case where thermal and 
solutal buoyancy forces act in the same direction with 
the same intensity), since the isolines indicate a 
unicellular regime with a parallel aspect and thermal 
stratification in the core region of the cavity and this 
independently on N. The flow and heat transfer 
intensities, whose numerical values are given in Table 3, 
show also this fact. 
 

Table 3 
Ef fec t  of  n  and  N  on  the  f low in tens i ty  and hea t  

t ransfer  ra te  fo r  Ra T  =  10 5  and Le = 10  
 

cψ  Nu  
 

N = 0 N = 1 N = 0 N = 1 

0.6 18.991 19.1 139.8 140.3 

1.0 8.01 8.51 30.08 30.549 n 

1.4 4.02 4.57 9.11 9.652 

 

For a fine examination of the effect of solutal buoyancy 
forces on thermal convection, the horizontal velocity (a) 
and temperature (b)profiles are displayed in Fig. 4.  
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Fig. 4. Velocity (a) and temperature (b) profiles for RaT = 105, 
Le = 10  and different values of n and N 
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As can be seen, for all the considered values of n, the 
profiles remain almost identical while passing N from 0 to 
1, which means that this parameter does not affect the 
dynamical and thermal fields. This is related essentially to 
the fact that the contribution of the solutal effects in the 
convection is negligible (Le = 10). Such a situation can be 
described as a regime of prevailing thermal effects. 
 
Influence of the power-law non-Newtonian behaviour 

on thermal convection 
Useful information, concerning the influence of the non-
Newtonian rheological behavior on the flow and thermal 
fields, can be obtained from the examination of Fig. 2. 
Thus, although the streamlines do not show a qualitative 
modification in the flow global structure, which keeps a 
unicellular and parallel aspect in the central part of the 
cavity independently on the value of n, the flow intensity, 
ψc, undergoes significant quantitative variations with n. In 
fact cψ  is seen to decrease with n passes, as shown in 
Table 3, which means, thus, a slowing down of the fluid 
circulation in such a situation. This trend is confirmed by 
the velocity profiles (a) of Fig. 3. On the other hand, the 
corresponding isotherms appear much more affected by 
the rheological behavior , since they become less and less 
inclined, with regard to the vertical direction, while 
increasing n, which testifies, thus, to the reduction of the 
flow intensity with this parameter. Moreover, Figs. 3 (b) 
show an increase, in absolute values, of the temperature 
with n, which indicates that the flow loses its intensity in 
such circumstances. This type of evolution, with n, is 
found also on the level of the mean heat transfer rate, Nu , 
whose values decrease while increasing n, illustrated by 
Table 3.  
Such results can be explained while referring to Eq. (7), 
where an increase of n causes an increase of the apparent 
viscosity, whose slowing-down role on the fluid motion 
is well known. It results, from what precedes, that, 
compared to Newtonian case (n = 1), the shear-thinning 
behavior (0 < n < 1) enhances the convection whereas 
the shear-thickening one (n > 1) reduces it. 
 

Conclusion 
 

The present paper is devoted to numerical and analytical 
experiments on natural simple and double-diffusive 
convections in a two-dimensional horizontal shallow 
enclosure (A >> 1), filled with non-Newtonian power-
law fluids, in the case where both short vertical sides are 
submitted to uniform heat and mass fluxes while the 
horizontal boundaries are insulated and impermeable. 
The main conclusions of the present investigation are 
summarized as follows: 
• The approximate analytical solution, developed on 
the basis of the parallel flow hypothesis in the core 
region of the cavity, is found to agree perfectly with the 
numerical solution, obtained by solving numerically the 
full governing equations. 

• The buoyancy ratio, N, seems not influencing the 
convection heat transfer while passing from 0 to 1 being 
given the value of the Lewis number, Le = 10. 
• The fluid flow and heat transfer characteristics seem 
to be rather sensitive to the flow behavior index, n. Thus, 
compared to Newtonian case (n = 1), the shear-thinning 
behavior (0 < n < 1) enhances the fluid circulation and 
the convection heat and mass transfers while the shear-
thickening one (n > 1) produces an opposite effect. 
In the future an extent for this study will be carried out with 
moderate and high values of N in order to examine widely 
the effect of this parameter on convection heat transfer. 
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