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This paper reports the results of an analytical and numerical study on natural convection heat transfer with and
without solutal buoyancy forces in a non-Newtonian power-law fluid contained in a horizontal rectangular shallow
enclosure submitted to uniform heat and mass fluxes along its short vertical sides, while the horizontal ones are
insulated and impermeable. An approximate theoretical solution is developed, on the basis of the parallel flow
assumption, and validated numerically by solving the full governing equations. A comparison between results
obtained in presence and in absence of solutal buoyancy forces is done. The effect of the non-Newtonian behavior on

fluid flow and heat transfer characteristics is examined.
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Nomenclature

A — aspect ratio of the cavity, Eq. (11)

Cr— dimensionless temperature gradient in the x-direction

Cs — dimensionless concentration gradient in the x-direction

D — mass diffusivity (m?/s)

g — gravitational acceleration (m/s)

H’ — height of the enclosure ()

J' — constant mass flux per unit area (kg/m’-s)

K — consistency index for a power-law fluid at the reference
temperature (Pa-s")

Le — Lewis number, Eq. (11)

L’ — length of the rectangular enclosure (m)

N — buoyancy ratio, Eq. (11)

n — flow behavior index for a power-law fluid at the reference
temperature

Nu —local Nusselt number, Egs. (12), (13) and (33)

Nu— average Nusselt number, Egs. (14) and (33)

Pr — generalised Prandtl number, Eq. (11)
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¢’ — constant heat flux per unit area (W/m?)

Rar — generalized thermal Rayleigh number, Eq. (11)

S — dimensionless concentration [: (S’— S? )/ AS *]

S7 — reference concentration at the geometric center of the
enclosure (kg/m’)

Sh — local Sherwood number, Egs. (12), (13) and (33)

ﬁ — mean Sherwood number, Egs. (14) and (33)

T — dimensionless temperature [: (T’ - )/ AT ]

T — reference temperature at the geometric center of the

enclosure (K)
AT* — characteristic temperature [: qH’/ 7»] (K)

AS* — characteristic concentration |= jH’/D| (kg/m®)
(u, v) — dimensionless axial and transverse velocities

= w)floy 1)

(x, y) — dimensionless axial and transverse co-ordinates

=) m]
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Greek symbols
o — thermal diffusivity of fluid at the reference temperature
(m?/s)
Br — thermal expansion coefficient of fluid at the reference
temperature (1/K)
Bs — solutal expansion coefficient of fluid at the reference
concentration (m3/kg)
A — thermal conductivity of fluid at the reference temperature
(W/m-C)
w— dynamic viscosity for a Newtonian fluid at the reference
temperature (Pa-s)
W, — dimensionless apparent viscosity of fluid, Eq. (7)
p — density of fluid at the reference temperature (kg/m’)
Q — dimensionless vorticity |= Q/ (oc/ H ’2)]

W — dimensionless stream function [: 1|1/0c]

Superscript
" — dimensional variable

Subscripts
¢ — value relative to the centre of the enclosure (x, y) = (4/2, 1/2)
* — characteristic variable

Introduction

Thermal or simple natural convection is a flow due to
density variations with temperature in gravitational field.
Double-diffusive natural convection, i.e. flows generated
by buoyancy due to simultaneous temperature and
concentration gradients, can be found in wide range of
situations. In nature, such flows are encountered in the
oceans, lakes, solar ponds, shallow coastal waters and
the atmosphere. In industry, examples include chemical
processes, crystal growth, energy storage, material and
food processing, etc... For a review of the fundamental
works in this area see, for instance, [1].

The literature on double-diffusive natural convection
shows that the majority of investigations were focused
on the enclosures of rectangular form [2].

In the past, many studies concerning Newtonian fluid
flows in enclosures, driven simultaneously by thermal
and solutal buoyancy effects, were carried out. These can
be classified under three types, according to the thermal
and solutal boundary conditions adopted. In the first
type, the cavity is subjected to a vertical solutal gradient
and a horizontal thermal one [3]. In the second type, both
the temperature and concentration gradients are imposed
transversally [4]. In the third type, which is the present
case, both the thermal and solutal gradients are imposed
laterally [5].

To our knowledge, for non-Newtonian fluids, except the
work performed by Benhadji et al. [6] in the case of a
porous horizontal rectangular layer, where double-
diffusive convection is generated inside a power-law
fluid by application of horizontal or vertical uniform heat
and mass fluxes, there is no investigations dealing with
fluid-filled enclosures.Otherwise, the majority of
investigations concerning non-Newtonian fluids dealt
with thermal driven buoyancy convection [7, 8].
Non-Newtonian flows are of importance and very
present in many industrial applications such as paper
making, oil drilling, slurry transporting, food processing,
polymer engineering and many others. Some of these
applications are discussed in Jaluria [9].

In order to contribute to fill the gap left by the lack of
studies on the field, at least partly, the present
investigation focuses on the effect of solutal buoyancy
forces on natural convection heat transfer inside a two-
dimensional horizontal rectangular enclosure, filled with
a non-Newtonian fluid. The cavity is submitted to
uniform heat and mass fluxes from its short vertical
sides, while its long horizontal boundaries are insulated
and impermeable.

Mathematical formulation

The studied configuration, sketched in Fig. 1, is a
rectangular enclosure of height H” and length L’ with the
long horizontal rigid walls insulated and impermeable
and the short vertical ones submitted to constant heat and
mass densities of fluxes, ¢” and j/, respectively.

oT’ _ oS’ _
o’ Control volume
q ‘|‘ q
— S ——
i Y, H J
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< >
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0 X, u) 9T’ _9S” _
ay’ a9y’

Fig. 1. Sketch of the cavity and co-ordinates system
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fluids

The non-Newtonian fluids considered here are those for
which the rheological behavior can be described by the
power-law model, proposed by Ostwald-De Waele
[10], whose expression, in term of laminar apparent
viscosity, is

, (au’)z+ ) . au'+av' > 2 {

Ha = ox’ oy’ oy o’ ()
where 7 is the power-law index and % is an empirical
coefficient known as the consistency factor, which is an
indicator of the degree of fluids viscosity. Note that for
n =1 the power-law model reduces to the Newton’s law
by setting & = . Thus, the deviation of n from unity
characterizes the degree of non-Newtonian behavior of
the fluid. Specifically, when 7 is in the range 0 <n < 1
the fluid is said to be pseudo-plastic (or shear-thinning)
and the viscosity is found to decrease by increasing the
shear rate. On the other hand when » > 1 the fluid is said
to be dilatant (or shear-thickening) and the viscosity
increases by increasing the shear rate. Dilatant fluids are
generally much less frequent than pseudo-plastic ones.
Though the Ostwald-de Wale model does not converge
to a Newtonian behavior in the limit of zero and
maximum shear rates, it presents however the advantage
to be simple and mathematically tractable. In addition,
the rheological behavior of many substances can be
adequately represented by this model for relatively large
range of shear rates (or shear stresses) making it useful,
at least for engineering purpose, and justifying its use in
most theoretical investigations of fluids having pseudo-
plastic or dilatant behaviors. On the other hand, the main
assumptions made here are those commonly used, i.e.,
the flow is laminar and two-dimensional, the viscous
dissipation is negligible, the interactions between heat
and mass exchanges, known under the name of Soret and
Duffour effects, are negligible, the fluid is
incompressible and its physical properties are considered
temperature independent except the density in the
buoyancy term which obeys the Boussinesq
approximation. Then, the dimensionless governing
equations, written in terms of vorticity, Q, temperature,
T, concentration, S, and stream function, s, are:
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—+ +
ot ox oy

[ fow 0@ ou 9]l
_ 2 M, 052  OU, 0%
_PrLM”V Q+ 2L FE— > JJ+ So (2
or ouT) olvT) )
o + . + P VT 3)
S  ous) o(vs) 1

_ o
ot 0x - dy _LeVS @)

and

Viy=-Q, )

where
u=%—;;v=—g—‘; ©)

(s fou v T T

H( j ( Jﬂay axJJ' @

and
Mot o, fou av] 0w ou ov]]
So=P| 50 5 |t | P e w )]

T s

+PrRaT(a +Naxj ®)

Such a formulation presents the advantage to reduce the
number of equations, by eliminating the pressure, which
is without interest in this study, and to be more
appropriate for two-dimensional flows.

The dimensionless boundary conditions, for the physical
system considered here, are

aT dS

u=v=y=0, ——=——=1forx=0and4 (9)
ox ox
oT 9§

u=v=y=0, —=—- =0 fory=0 and 1 (10)
dy dy

On the other hand, for the vorticity, which is unknown at
the boundaries, the relation of woods [11] is used, for its
accuracy and stability.

The dimensionless variables are obtained by using the

H?Ja, o/H', ofH?,
q’H’/\, jH'/D and o corresponding to length, time,

characteristic scales H’,

velocity, vorticity, characteristic temperature,
characteristic concentration, and stream function,
respectively.

In addition to the power-law index, n, the present
problem is governed by five other dimensionless
parameters, namely, the aspect ratio of the enclosure, 4,
the Lewis number, Le, the buoyancy ratio, N, the
generalized Prandtl, Pr, and thermal Rayleigh, Ra;,

numbers, whose expressions are
L/

A=—,
H
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(k/p) 17

o 2-n

Pr=

~ gBH/2n+2q/

and —W.

Ra; (11)

Notice that it is possible to recover the Newtonian
expressions of Pr and Ra, by setting n = 1 and

replacing k by the Newtonian viscosity .
Numerics

The two-dimensional governing equations are solved by
using the well known second order central finite
difference method with a regular mesh size. The
integration of Eq. (2), (3) and (4), is performed with the
alternating-direction implicit method (ADI). This
method, frequently used for Newtonian fluids, was
successfully extended to non-Newtonian power-law
fluids in the past by Ozoe and Churchill [7] and recently
by Lamsaadi et al. [8]. To satisfy the mass conservation,
Eq. (5) is solved by a point successive over-relaxation
method (PSOR) with an optimum relaxation factor
calculated by the Franckel formula [11]. The mesh size
is chosen on the basis of a compromise between running
time and accuracy of the results. The procedure is based
on grid refinement until the numerical results agree with
the parallel flow ones, presented below, within
reasonable accuracy. Hence, a uniform grid of 321x81 is
found sufficient to model accurately the flow, temperature
and concentration fields within a cavity of 4= 24 (value
used for the numerical computations). To satisfy the
continuity ~ equation, the convergence  criterion

Kk 4 K+l
} ‘Wi,j _Wi,j‘<10 } ‘Wi,j
i,j i,j

the value of the stream function at the kth iteration level.
The time step size, 8¢, is varied in the range 107 <8< 10,
depending on the values of the governing parameters. More
precisely, the small values of 8¢ are used for high values of
n and Rary.

With the Ostwald power-law model, the dimensionless
viscosity, given by Eq. (7), tends towards infinity, for,
0<n <1 at the level of the cavity corners, where the
velocity gradients tend towards zero, which renders
impossible direct numerical computations. This
difficulty is, however, overcome by using average values
for the corner viscosity making, thus, the computations
possible and stable.

The local heat and mass transfers through the fluid layer
filling the cavity can be expressed in terms of the local
Nusselt and Sherwood numbers, respectively, defined as

i,

is adopted, where ;s

7 A4 __1
NuO) = Boar ) = a1 ~ a7/ 4

and

L

(DAS/L) ™ AS ~ (AS/4) (12)

where AT =T(0,y)-7(4,y) and AS = 5(0,y)— S(4,) are

the side to side dimensionless local temperature and
concentration differences, respectively. This definition
is, however, notoriously inaccurate owing to the
uncertainty of the temperature and concentration values
evaluated at the two vertical walls (edge -effects).
Instead, the Nusselt and Sherwood numbers are
calculated on the basis of a temperature and
concentration differences between two vertical sections,
far from the end sides. Thus, by analogy with Eq. (12),
and considering two infinitesimally close sections, the
local Nusselt and Sherwood numbers can be defined by

Nu(y) = lim 8x/8T = i L __ :
u(y) = lim /0T = lim S e = ox/o7) _,,
and
Sh(y) = lim 8x/8S = i (R 13
() = lim ox T 6o00S/&x (ax/as)x:A/2 - (19)

where Ox is the distance between two symmetrical
sections with respect to the central one. The
corresponding average Nusselt and Sherwood numbers
are, respectively, calculated at different locations, as
follows

Nu= jNu(y)dy
0
and

Sh= J-Sh(y)dy . (14)
0

As an additional check of the results accuracy, energy
and matter balances are systematically verified for the
system at each numerical code running. Thus, the overall
heat and mass transfers, through each vertical plane, are
evaluated and compared with the quantities of heat and
mass furnished to the system at x = 0. For the results
reported here, the energy and matter balances are
satisfied within 2 % as a maximum difference.

Typical numerical results, in terms of streamlines (a),
isotherms (b) and isoconcentrations, are presented in
Fig. 2, obtained, for A = 24, Le = 10, Ra,= 10° and
various values of n and N. As appears, from these
figures, the flow is parallel to the horizontal boundaries
of the enclosure and the temperature and the
concentration are linearly stratified in the x-direction of
the core region. The approximate analytical solution,
developed in the next section, relies on these
observations.
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n=1.0

i

==

=1 N=1

n=14

Fig. 2. Combined effect of N and n on: a) —streamlines, b) —isotherms

Approximate parallel flow analytical solution

The results presented in Fig. 2, allow the following
appropriate simplifications:

wle,y)=wly), 7ley)= Crle—4/2)+6; ()

Sbey)= Cgle—4/2)+65(y), (15)

where C; and Cg are unknown constant temperature

and

and concentration gradients in the x-direction. On the
basis of this, the non-dimensional governing equations
become

with

(18)

J uly)dy =0 (19)

0

as boundary and return flow conditions, respectively.
Recently, the above concept has been successfully used
by Lamsaadi et al. [8] to predict the thermal convection
flow behavior in the case of a non-Newtonian power-law
fluid.

The integration of Eq. (16) and (17), coupled with the
conditions (18) and (19), leads to analytical expressions

42 |_ du n-1 du-| of velocity, temperature and concentration. However,

—ztd— d_J: (CT + NCj )RaT = FERa;, (16) such an operation is difficult to carry out owing to the

dy”||dy Y particular nature of the governing equations and requires,

therefore, a special numerical treatment. In fact, the non-

d%e, d%0, linearity of the fluid behavior and the change of du/dy

Cru = &y and LeCgu = dy? (17) " sign, due to the return flow, impose that the velocity
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expressions are different depending on whether 0 <y < yy,
Yo<y<yory <y<1, where y, and y; =1 — y,
(because of the centro-symmetry of the core flow) are
the vertical coordinate values for which du/dy =0. They
are derived from Eq. (19), which is numerically solved

by using a combination of the Regula-Falsi iteration
method [12] and the Gauss-Legendre integration method
[13]. To reduce the velocity, temperature and
concentration expressions, the function

f(y)z (y2 —-y+ yoyl) 2 is introduced. Thus, for

0<y<y |_ :
(v)= £ Ra‘T/”H LG dyJ : (20)
1
0,()= C;E""Ra)" ﬂ ) ””ddey y |+6,(0) @)
Yo=Yy
[ ) )
uly)= E'" Ra}l" { [ s T 1 dyJ, (22)
[ 2 y [ 7]
GT()/)= CTEl/n RalT/n| (y _2)’0) l/ndy'i';/[ltjl-[[_ f(,v 1/nddedey+
W ¥ o 17 1
+ (= ){E{ O ddey + Ji;@ G ddedeyJ +6,(0) . (23)
n<y<l
[y y - 1
uly)= E"" Raj" |Lf LGl ay + f L6l ay+ SO dyJ, (24)
[ |
0,(v)=C,E" Ra'/"'ﬁ(y )ty -2) f[f(y 1/”dy+f f(y)]l/”dyJ'Jr
]I]‘FT o) ay UdewJJI f[— f(y]l/”dde de+
b Vil % W op % 1 1
+%(y1 ~wf { LGl ay + (5, —yo){u Ol ”ddey + {HD; O ay dedeJl+ 0,(0) (25)
The expression of 6,(y), given by
0sly)= Le 0, ) 29

is obtained by eliminating u from Eq. (17) and (18), and integrating twice the resulting equation taking into account
of Eq. (19) and the centro-symmetry of thermal and solutal fields in the core region. The exploitation of such a
property and the use of Eq. (26) give, respectively:
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(1) 2l o
0,(0)=-C,E" R ‘/”t (y)]l/"dy+ | jlf 1) l/"ddedeer
VO\J y
VA % -| 7 IR -| _] —|
+ly2- mfﬁ O ay j J‘ﬁ 6 o | @
oLo 0|_0 0 J
and
Cs
0,(0) = Le—=>0,(0) . (28)
Cr

The expression of y(y) can be deduced from that of u(y) by integration of Eq. (6) taking into account of Eq. (10).
Therefore, the stream function at the center of the enclosure, which is a measure of the flow intensity, can be

expressed by

l2p2)- Evnzea;/{(l/z sl Jﬁ s dy}y . T{J‘[ A dy]dy.

On the other hand, C; and C, are evaluated from

thermal and solutal boundary conditions imposed on the
end walls. Because of the turning flow at the end regions
of the fluid layer, the boundary conditions in the x-
direction, Eq. (9), could not be satisfied by the parallel
flow approximation. Instead, the expressions of C, and
C, are determined by matching the core solution, Eq.
(15), to the integral solution for the end regions, which
consists on the integration of Eq. (3) and (4), together
with the boundary conditions (9) and (10), by
considering the arbitrary control volume of Fig. 1. This
yields:

cT+1={u(y>aT<y>dy

and

(30)

;1= el sy
0
to which the substitution of the expressions of u(y), 04(y)
and O4(y) gives:

1
Ch=—r———
"7 A4, EV"Ral" -1

and Cg = 3D

A, Le*E"Ral" -1

On the other hand, knowing that E =C,- NCg, the
following transcendental equation is obtained

Le* A2Ral"E™ " — 4 (1+ Le*)RaZ"E™" -
—(Le* + N)A,Ra?"EY" + E+(N+1)=0, (32)
where the coefficient 4,, which depends only on #n, is

calculated with the Gauss-Legendre integration method
and its values are presented with those of y, in Table 1.

(29)
oLo
Table 1
Dependence of ygand 4, on n
n Yo An
0.6 0.199 —-0.485-1077
1.0 0211 -0.276:10°
1.4 0.219 -0.160-10*

It should be point out, from Table 1, that y, is an
increasing function of n, which means that the velocity
maximum is displaced away from the lower wall by
increasing n. Moreover, Eq. (19)-(27) indicate that n is
the only parameter that affects the shape of u, v, 87 and
O profiles.

To determine the value of E, Eq. (32) is solved by the
Regula-Falsi iteration method and the values of C7 and
Cs are deduced from Eq. (31), for each given value of
Le, N,n and Ra; .

Finally, taking into account of Eq. (13) and (14), the
Nusselt and Sherwood numbers are constant and can be
expressed as

Nu=-1/C; = Nu
and

Sh=-1/Cy = Sh . (33)

Results and discussion

The fact of imposing uniform heat and mass fluxes, as
boundary conditions, leads to flow characteristics
independent on the aspect ratio, 4, when this parameter
is large enough. The approximate solution, developed in
the preceding section, on the basis of the parallel flow
assumption, is thus valid asymptotically in the limit of a
shallow cavity 4 >> 1. In this respect, after some
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numerical tests (results not presented here), 24 is found
as being the smallest value of A4 leading to results
reasonably close to those of the large aspect ratio
approximation. In fact, the asymptotic analytical limits
are largely reached in such a situation. This value
reduces to 4=8 in pure thermal convection (N =0) as
obtained by Lamsaadi et al. [8], which shows the
retarding role of the double diffusion with respect to the
asymptotic state. On the other hand, for the non-
Newtonian fluids considered here, the Prandtl number,
Pr, is large enough such that the convection becomes
insensitive to any change of the large values of this
parameter [4, 8]. On the basis of this, the simulations are
conducted with Pr— o, ie. by neglecting the
convective terms on the left hand side of Eq. (2), which
presents the advantage of making the computations
faster than with finite large values of Pr [10]. Therefore,
the natural double-diffusive convection flow developed
inside the enclosure is governed by the thermal Rayleigh
number, Ra; , the buoyancy ratio, N, the Lewis number,

Le, and the power-law index n, which is varied, in this
study, from 06 to 14 to include shear-

70

Parallel flow

® Numerical

Parallel flow
e  Numerical

thinning (0<n<1), Newtonian (n=1) and shear-

thickening (n > 1) fluids.

Validation of the approximate parallel flow analytical
solution

The inspection of the streamlines (@) and isotherms (b),
depicted in Fig. 2, allows affirming the existence of an
analytical solution, for the present problem, owing to the
parallelism and the stratification aspects that flow and
temperature fields exhibit, respectively, in the central
part of the enclosure, i.c. somewhat far from the side
edges. Moreover, Fig. 3, comparing the corresponding
horizontal velocity (top) and temperature (bottom)
profiles, calculated analytically (continuous lines) and
numerically (black dots) at mid-length of the cavity,
along the vertical direction, testify to the almost perfect
agreement between the two types of solutions.
Another confirmation of this is given by Table 2 where
the relative difference between analytical and

numerical results does not exceed 0.61 % for |1pc| and

0.38 % for Nu .

70

n=0.6

Parallel flow
®  Numerical

354

-354

0,16

0,12

Fig. 3. Velocity (a) and temperature (b) profiles for Ray = 10°, Le = 10 and different values of n and N
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Comparison between the analytical and numerical results for N = 0, Ra; =10 and Le = 10 Table2
N=0 Ve N
Parallel flow Numerical Parallel flow Numerical
0.6 19.016 18.991 139,835 139.8
n 1.0 8.035 8.01 30.115 30.08
1.4 4.045 4.02 9.145 9.11
N=1 e M
Parallel flow Numerical Parallel flow Numerical
0.6 19.1 19.12 140.3 140.33
n 1.0 8,51 8.53 30.549 30.58
1.4 4.57 4.59 9.652 9.68

Hence, it appears clear, from what precedes, that the
results of the two approaches adopted in this study agree,
at least for the governing parameters selected values,
which validates the parallel flow assumption used in
section 4 and justifies the choice of 4=24 as a large
aspect ratio approximation value.
Thermal convection with and without solutal
buoyancy forces

At first, it is advisable to recall that the case of natural
simple convection (thermal) corresponds to N = 0, i.e.
the case where solutal buoyancy forces are absent,

For a fine examination of the effect of solutal buoyancy
forces on thermal convection, the horizontal velocity (a)
and temperature (b)profiles are displayed in Fig. 4.

604 ©° N=0 n=0.6
a N=l °°o°°°°éo°
40 K s
] N n=10 N
204 e o¢°°°°°°°°

6 40 s R
08,0000080854
04 P Ags“'o n=14 9‘0-8\ﬂ
u kﬁ%ﬂ na@’go
1 2, '-‘n-nﬁ-g-aa-n“; a8,

whereas in presence of these forces, which corresponds 2042 %oq, 2002° 4
to N # 0, it is about the natural double diffusive { a faas o
convection. e I a8
It seems obvious from Fig. 2, where are depicted the _60; fannant®
streamlines («) and isotherms (b), that the flow structure .
and the thermal field do not undergo qualitative change 0 05 1
when N passes from 0 to 1 (case where thermal and y
solutal buoyancy forces act in the same direction with a
the same intensity), since the isolines indicate a
unicellular regime with a parallel aspect and thermal 0,16
. . . . . . 4 n=14
stratification in the core region of the cavity and this o] ° N0 00000008
independently on N. The flow and heat transfer 1 &2 M 0000 n=10
intensities, whose numerical values are given in Table 3, 0’08'_ 000 0000000008
show also this fact. 0,04 gﬁa”’:::oooooo’:fo%g )
Table3 T o £8880°°
Effect of n and N on the flow intensity and heat joooooooﬁ°°°°°’2gg§§£
transfer rate for Ray = 10° and Le = 10 -0’04_ A,o,oﬁ") 88
0,084 000000600 o0 0
__ ] 6
W, Nu 0,124 0000000000
N=0 N= N=0 N= 016 ,
0 0,5 1
0.6 18.991 19.1 139.8 140.3 y
n 1.0 8.01 8.51 30.08 30.549 b
1.4 4.02 4.57 9.11 9.652 Fig. 4. Velocity (a) and temperature (b) profiles for Ray = 10°,

Le = 10 and different values of n and N
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As can be seen, for all the considered values of n, the
profiles remain almost identical while passing N from 0 to
1, which means that this parameter does not affect the
dynamical and thermal fields. This is related essentially to
the fact that the contribution of the solutal effects in the
convection is negligible (Le = 10). Such a situation can be
described as a regime of prevailing thermal effects.

Influence of the power-law non-Newtonian behaviour
on thermal convection
Useful information, concerning the influence of the non-
Newtonian rheological behavior on the flow and thermal
fields, can be obtained from the examination of Fig. 2.
Thus, although the streamlines do not show a qualitative
modification in the flow global structure, which keeps a
unicellular and parallel aspect in the central part of the
cavity independently on the value of #, the flow intensity,
v, undergoes significant quantitative variations with #. In

fact |y,

Table 3, which means, thus, a slowing down of the fluid
circulation in such a situation. This trend is confirmed by
the velocity profiles (a) of Fig. 3. On the other hand, the
corresponding isotherms appear much more affected by
the rheological behavior , since they become less and less
inclined, with regard to the vertical direction, while
increasing n, which testifies, thus, to the reduction of the
flow intensity with this parameter. Moreover, Figs. 3 (b)
show an increase, in absolute values, of the temperature
with n, which indicates that the flow loses its intensity in
such circumstances. This type of evolution, with n, is

is seen to decrease with n passes, as shown in

found also on the level of the mean heat transfer rate, Nu ,
whose values decrease while increasing n, illustrated by
Table 3.

Such results can be explained while referring to Eq. (7),
where an increase of n causes an increase of the apparent
viscosity, whose slowing-down role on the fluid motion
is well known. It results, from what precedes, that,
compared to Newtonian case (n = 1), the shear-thinning
behavior (0 < n < 1) enhances the convection whereas
the shear-thickening one (z > 1) reduces it.

Conclusion

The present paper is devoted to numerical and analytical
experiments on natural simple and double-diffusive
convections in a two-dimensional horizontal shallow
enclosure (4 >> 1), filled with non-Newtonian power-
law fluids, in the case where both short vertical sides are
submitted to uniform heat and mass fluxes while the
horizontal boundaries are insulated and impermeable.
The main conclusions of the present investigation are
summarized as follows:

e The approximate analytical solution, developed on
the basis of the parallel flow hypothesis in the core
region of the cavity, is found to agree perfectly with the
numerical solution, obtained by solving numerically the
full governing equations.

e The buoyancy ratio, N, seems not influencing the
convection heat transfer while passing from 0 to 1 being
given the value of the Lewis number, Le = 10.

e  The fluid flow and heat transfer characteristics seem
to be rather sensitive to the flow behavior index, n. Thus,
compared to Newtonian case (n = 1), the shear-thinning
behavior (0 < n < 1) enhances the fluid circulation and
the convection heat and mass transfers while the shear-
thickening one (n > 1) produces an opposite effect.

In the future an extent for this study will be carried out with
moderate and high values of N in order to examine widely
the effect of this parameter on convection heat transfer.
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